Thursday, January 29, 2015

How tall could a wooden building rise? Experts say the sky is the limit and talk skyscrapers

A nice wooden cottage with a lake view; a wooden chalet in the mountains where you could sit in front of the fireplace with a good book and watch the snow fall on the window; or a small log cabin in the woods, where you could enjoy your breakfast on the porch every morning, listening to lovely bird songs, these are the types of buildings that you most probably imagine whenever you think of wood buildings. But could you envisage working in a wooden skyscraper? Hardly.

130 years after the world’s first skyscraper- the Home Insurance Building- was built in Chicago by American engineer, William Le Baron Jenney, the construction methods and by-products associated with such large scale infrastructure has inevitably led architects and engineers to seek new ways of building taller and faster without having such a drastic impact on the environment. And that has seen them revisit the most basic building material of them all: wood.

Not any wood is suitable for such a concept though. A type of super-plywood, called cross-laminated timber (CTL) has been created to maintain the strength of high-rise constructions. This effect is achieved by gluing the layers of low-grade softwood together to create stronger timber panels. Softwood panels are usually made of cedar, Douglas fir, pine, or redwood.

Reducing the environmental impact of architecture

In his book, “The Case for Tall Wood Buildings”, Vancouver- based architect, Michael Green explains how wood will be able to absorb carbon dioxide from the atmosphere.  Unlike conventional materials like concrete, wood can be used as it is. Natural resources like coal and gas don't need to be burnt to produce it, so less carbon ends up in the air. Since it is healthier for us, and for the planet, why not make the best of it?

Timber stores 0.8t of carbon dioxide within 1 cubic meter. In comparison, the production of both concrete and steel are one-way energy intensive processes that release large amounts of carbon dioxide into the atmosphere.  A 10-storey building could absorb as much as 1,600 ton of carbon, in comparison to a concrete building’s comparatively low 600 tons, according to the Canadian architect.
Michael Green proposed 20-storey (60-metre) structures made from cross-laminated timber (CLT) panels. CLT is a durable and solid-wood material developed European technology, to replace all structural elements above ground level.

Untreated timber has the potential to rot when exposed to moisture and air over extended periods of time, but CTL buildings are designed with a rain screen façade to effectively manage moisture exposure.

Stadthaus Building- London
How long will a CTL building last for? Apparently it can last as long as a concrete or steel building. CTL has been certified for a minimum 60 year lifespan by Building Research Establishment in the UK, which is the equivalent of concrete or steel.

Moreover, wood is natural, warm (intrinsic thermal properties means lower heating and cooling costs), compatible with other materials, non allergic and healthy to inhabit and has attractive natural colors.

Stop cutting trees and beware of fire!

The benefits of wooden skyscrapers are clear for all to see.  Criticisms regarding cutting even more trees down to aid the trend have also been refuted, with there now being a use for trees already damaged. Similarly, trees can also be grown in nurseries.

But while timber advocates such as Green hope to sow the seeds of change in the minds of policymakers worldwide, building regulations still put a low-rise lid on the height of timber buildings. This is based on wood’s historic reputation as kindling for a great city fire.

Roaring fires have ravaged city streets, in London, Chicago or San Francisco, to only mention a few cities, wiping out great examples of grand architecture and razing urban history to the ground. But today’s engineered timber develops a protective charring layer that maintains structural integrity and burns very predictably, unlike steel, which warps under the intense heat.

Europe leads the way in the concept’s innovation

Until now, America’s conservative building regulations and a lack of interest from developers and their customers have meant few interesting wooden buildings have been built there. In contrast, Europe, Australia and especially Canada are embracing the emerging technologies.

Forte Building- Melbourne
So far two high- rise buildings made of wood have been erected in the world: nine-storey Stadthaus in London and the 10-storey Forte Building in Melbourne.  Also in Bergen (Norway), a 14-storey wooden building is currently under construction.

Forté, the world's tallest timber apartment building, raising 10 floors above the ground only includes 23 apartments and was built in 16 weeks.

With so much controversy around this subject we are obviously not going to see the first wooden high-rise building city in the near future. Until then you might just want to have a look at Michael Green’s video “Why we should build wooden skyscrapers”.



Friday, January 16, 2015

What if you could 3D print your dream home in one day?

What if your dream home was ready in one day (Yes, one day!) and it only cost 5.000 USD? As unbelievable as this may seem, printing homes is possible today, according to international media. This would be a breakthrough with profound implications for housing affordability and customization. It would also be nice to see concrete replaced by a more sustainable material, which would truly reduce the carbon footprint of this type of construction.
Chinese company Win Sun New Materials showed that this was possible. The company successfully printed 10 houses in one single day. The reported cost for each house printed by the Chinese company Winsun was just 5,000 USD.

Rather than printing the homes in one go, Winsun’s 3D printer creates building blocks by layering up a cement/glass mix in structural patterns. 

The diagonally reinforced print pattern leaves plenty of air gaps to act as insulation. These blocks are printed in a central factory and rapidly assembled on site.


You may want to see how this was done:

In Amsterdam, a team of architects has started construction of the 3D Print Canal House, using bio-based, renewable materials. The site is both construction site and public museum.
Canal House Amsterdam
The Canal House is a symbol of Amsterdam. When the canal belt was built 400 years ago, Amsterdam was a prime example of innovation.

“It is indeed a very interesting and revolutionizing approach to construction. I wonder however what would be the costs of operation: heating and cooling of these homes? The enormous advantage is the incredible customizability. Although an interesting use of robotics and waste materials, I believe it is important to look at all aspects of housing (energy required for operation, weight, seismic requirements, fireproofing, etc.) before decisions are made to move forward with this concept. Still - very flexible possibilities now that the machine is built and working. I will certainly look forward to seeing what they do with it next.“ says engineer Gheorge Bitca, head of OCTAGON's tendering department.
What are some of the advantages and disadvantages of 3D printing a building?

One great advantage of 3D printing over traditional building techniques (such as prefabricated concrete) is the possibilities of using a high level of detail and ornament and variation. Rather than using standardized elements, 3D printed designs can each be modified and customized to fit the user's needs and taste. It will no longer be more expensive or more labour intensive to add details to, for example, your façade and it is easy to create unique objects.

3D printing is an additive manufacturing technique. That means the process goes straight from the raw material to the final product, thus eliminating waste. There are no transport costs, as designs can simply be transferred digitally and printed locally.

In terms of disadvantages, it is obviously a huge challenge to create a building that complies with all the current building regulations. There is the question of insulation, fireproofing, wind loads, foundations, as well as the possible materials to print with (using this printer). All theseaspects are currently being researched and investigated.

Printing one house in a run, still challenging
A gigantic 3D printer, able to print whole house in a single run, from its structure to its electrical and plumbing systems has not been created yet, so the houses are printed piece by piece for the time being.
For the last seven years, Loughborough’s University researchers have been developing 3D concrete printing technology for commercial purposes. They came up with a system that is made up of a gantry and robotic arm, which they are still perfecting. This device uses very exact computer control to extrude cement-based mortar into layers and create building components that can then be joined together into a larger structure.
The researchers are certain that this technology already allows for the building of complex structures that would prove a challenge for traditional construction. In fact, their 3D concrete printer could potentially print whole sections of a building with all the electrical and plumbing spaces already in place. This would cut down on the building time considerably, even when the project is a large, multi story structure.
Stay tuned, a revolution in traditional construction is well underway!

Friday, January 9, 2015

Two landmark projects built by OCTAGON, made public debut in 2014

With lots of projects under development and new investments on the pipeline, 2014 was certainly a dynamic year for the office segment. And developers rolled the dice in favor of OCTAGON. The company made the best of the market opportunities and managed last year to deliver two major office buildings, both of them located in Bucharest: Green Court Bucharest – building B and Hermes Business Campus- building B.

How did we do it? It was not easy, but we somehow managed to master extremely tough site conditions, we put in a lot of hard work and used the latest technologies in building processes. Below are highlights from each project.

As green as it gets

What did the real estate giant Skanksa envision when they decided to develop the office complex Green Court Bucharest? Large open office spaces, easy to reach from any area of Bucharest, with lots of green elements, in order to create a healthy comfortable working environment.

Green Court Bucharest - building A


How did this concept translate into design? The project includes three office buildings stretching over 52,000 sqm, built in Bucharest’s office hub, at the crossroads of Barbu Văcărescu Blvd and Pipera Road, within five minutes walk from Aurel Vlaicu metro station. Skanska also thought of making the project as green as possible and thus implemented  “green” solutions, such as glass façade with low heat transfer, natural lighting in over  85% of the working areas, power stations for electric cars charging, bicycle parking areas and facilities such as showers and locker rooms.

OCTAGON was hired to build the infrastructure and superstructure of building A and the superstructure of building B and successfully delivered both projects in 2013 and 2104.

Building A has a GLA of 19,500 sqm, 12 floors and is 91% leased by clients such as Schneider Electric România, Orange România, LS TRAVEL RETAIL Romania. The building was acquired by real estate investor Globalworth Real Estate Investments Ltd for 44 million euro.

Building B has a total GLA of 18.000 mp, 12 floors and 3 underground parking levels, with 315 available parking spaces. The second phase of the project also features sustainable solutions to minimize the impact of the building on the environment and to significantly reduce operational costs.

Modern technologies such as energy efficient double façade, efficient lighting systems, equipped with movement and intensity sensors, were used.

Beating the odds

In 2010 Belgian developer Atenor Group decided to build their first project in Romania, right across Pipera metro station. Building a 78,000 sqm office complex in a moment when the market was on a downward path seamed, at the time, extremely ambitious. Four years later, the first of the three buildings was delivered by OCTAGON and the company is now working on building the second one.

It sure was and still is a challenging project, but so far, it has beaten the odds. Hermes Business Campus started in a moment when the entire real estate market was on a downward path and few companies were thinking of relocating or leasing spaces in large scale office schemes.

Hermes Business Campus- building B

While building the first office unit of the complex, Austrian general contract, Alpine Bau, went bankrupt and OCTAGON, which was Alpine’s subcontractor, took over the project and continued the works.

Building B covers 37,000 sqm, has eight floors above the ground plus technical floor and is fully leased.  The Embassy of Netherlands, Xerox, SNC Lavalin and Synevo IT are among the tenants of the building.

On the western façade photo voltaic cells were installed, thus ensuring 7% of the entire energy consumption for one year.

OCTAGON used 31,000 cm of concrete and 3,600 t of metal fittings for the construction of building B. Three hundred people worked on the construction site and the project was delivered in June 2014.

The office building is currently being BREEAM certified with Excellent rating on-design and post-construction, which represents the best certification a building can obtain in terms of sustainable and green features.

Watch the video here:

  
OCTAGON CONTRACTING & ENGINEERING

More information here

Tel: (+40) 21 232 39 20